Evaluation and Management of Lower Extremity Ulcerations

Eric McBride, NP
Wound Care Basics

• Principles of Wound Care

 ❖ If it’s wet, dry it.
 ❖ If it’s dry, wet it.
 ❖ If it’s deep, fill it.
 ❖ If it’s necrotic, debride it.
Wound Care Basics

• Healthy wound bed.
 • Beefy red granular tissue.
 • Superficial wounds may have flat non-granular appearance.
 • Moist wound bed
 • Intact wound edges
 • Serous or Serosanguinuous drainage
 • Minimal to no erythema on the surrounding skin
Wound Care Basics

• Unhealthy wound bed
 • Loose yellow tissue- (slough)
 • Firm or leathery yellow tissue- (biofilm)
 • Dry or wet gangrene -(black eschar)
 • Green slough- (gram negative infection i.e. pseudomonas)
 • Hypergranulation- wound bed above skin level.
 • White/pale pink tissue- decreased arterial supply
WOUND CLASSIFICATIONS
Arterial Ulcers
Arterial Ulcer

• Approximately 5% of all LE ulcerations in the U.S.

• Pathophysiology
 • Caused by stenosis or occlusion of arterial supply
 • Ischemia causes tissue necrosis
 • Most common in diabetics and smokers
Arterial Ulcer

- Clinical presentation
 - Intermittent claudication
 - Pain at rest with feet at level of heart or above.
 - Decreased/absent peripheral pulses
 - Cool skin temperature
 - Shiny, thin skin.
 - Absent hair on the extremity
 - Prolonged cap refill
 - Dependent rubor
Arterial Ulcer

• Clinical presentation (cont.)
 • Wounds are distal to area of blockage.
 • Often between or on tips of toes, over phalangeal heads, or around areas subject to trauma (malleolus)
 • Edges are “punched out”
 • Pale and dry wound base with no granulation
 • Minimal drainage
 • Dry or wet gangrene often present
Arterial Ulcer

Arterial Ulcer

• Work-up
 • Arterial Duplex Ultrasound with ABI
 • Wave forms show patency of arteries/arterioles
 • Ankle-Brachial Index
 • Normal is 0.9-1.3
 • 0.8-0.9 is mild arterial disease
 • 0.5-0.8 moderate arterial disease
 • 0.5 or less is severe ischemia ***avoid compression***

 • In office ABI can be done with US doppler/BP cuff
 • Same side arm and leg using brachial and DP/PT pulse
 • Inflate cuff on arm and ankle until no sound is heard
 • Release pressure noting the first pulse sound
 • Systolic ankle/Systolic brachial
Arterial Ulcer

• Work-up cont.
 • CT Angiogram with run-off
 • Dye injected into vasculature.
 • CT images capture areas of blockage

• Magnetic Resonance Angiography
 • Most accurate diagnostic
 • With run-off for legs
 • More expensive
 • A study by Yucel et al found that MRA was more accurate in evaluating lower extremity vessels when compared to conventional angiography.
Arterial Ulcer

• Treatment
 • Improve flow
 • Stenting/Angioplasty
 • Bypass surgery
 • Anti-platelets
 • Pentoxifylline
 • Amputation (auto vs surgical)
 • Lipid lowering agents
 • Smoking cessation
 • Improve A1C
 • Analgesics
 • Avoid pressure/injury!!!
 • Keep stable eschar dry and clean
Diabetic Foot Ulcers
Diabetic/Neuropathic

• Pathophysiology
 • Chronically elevated blood glucose levels cause damage to nerves and capillaries
 • This leads to a loss of sensation to the lower extremities.
 • No sensation = no pain.
 • Pressure and trauma cause wounds.
 • Shoes (callous)
 • Nails, rocks, heating pads
 • Charcot and other foot deformity (tendinopathy)
Diabetic/Neuropathic Ulcers

By Penn State - Penn State Researchers Develop Topical Treatment for Diabetic Wound Healing https://invent.psu.edu/success-story/penn-state-researchers-develop-topical-treatment-for-diabetic-wound-healing
Diabetic/Neuropathic Classification Systems: Wagner Scale

- **Grade 0** = pre-ulcer lesion, healed ulcer, presence of bony deformity
- **Grade 1** = superficial ulcer without subcutaneous involvement
- **Grade 2** = penetration through the subcutaneous tissue
 - May have exposed bone, tendon, ligament, or joint capsule
- **Grade 3** = deep ulcer with abscess and/or osteomyelitis
- **Grade 4** = ulcer that led to gangrene of the toes and/or forefoot.
 - Amputation likely
- **Grade 5** = ulcer that has caused gangrene of the entire foot.
 - Requires amputation
Diabetic/Neuropathic

• Work-up

 • Hgb A1C, CBC, CMP
 • Arterial Duplex with ABI
 • ABI may be falsely elevated due to calcification
 • Monofilament test
 • Wound tissue cultures
Diabetic/Neuropathic

- **Treatment**
 - Improve glycemic control
 - A1C greater than 8% significantly impacts healing
 - Debridement
 - Moisture control (sweat, shoes, gravity)
 - Referral to podiatry
 - Referral to prosthetist for orthotics/diabetic shoes
 - Total Contact Casting
 - Hyperbaric Oxygen Therapy (Wagner 3)
Venous Stasis Ulcers
Venous Stasis Ulcers

- Most common lower leg wound in the U.S. (70%)
- Pathophysiology
 - Venous hypertension due to damage to veins and/or reduction in muscle pump
 - Incompetent valves cause backflow (reflux)
 - Often form a bulla before ulceration

Pooling of blood ➔ increased pressure ➔ capillary damage, altered lymphatics, inflammation ➔ tissue hypoxia ➔ ulceration
Venous Stasis Ulcers

Risk Factors

- Obesity
- DVT
- Pregnancy
- Incompetent valves
- CHF
- Age
- Sedentary
- Trauma to leg
Venous Stasis Ulcers

• Presentation
 • Edema (may be pitting)
 • Hemosiderin staining
 • Wound tends to appear above medial malleolus (Gaiter area)
 • Wound tends to be shallow with irregular borders
 • Wound often has slough
 • Wound edges are often either dry/crusted or macerated
 • Easily infected. Frequent cause of cellulitis.
Venous Stasis Ulcers
Venous Stasis Ulcers

• Work-up
 • Venous Insufficiency Doppler
 • Evaluates waveforms
 • Arterial Duplex
 • Ankle Brachial Index
 • Tissue cultures
Venous Stasis Ulcers

Treatment

• Compression (garments or wraps)
• Elevation of feet
• Absorptive dressings (Alginates, foam, etc.)
• Pneumatic pumps
• Diuretics
• Endo-vascular closure
Lymphedema

- **Lymphedema**
 - localized edema due to lymph system failure
 - **Primary** - hereditary or malformation
 - **Secondary** - related to venous disease, trauma/infection, or surgery (cancer)
 - Can cause elephantitis of an extremity
 - Significant skin changes
 - May only affect one limb
 - Kaposi-Stemmer sign - inability to pinch a fold of skin at second toe
- Treatments are similar to venous stasis disease with the addition of manual lymph drainage.
Lymphedema
Peripheral Edema

- 0) None
- 1+
 - 2mm pit
- 2+
 - 4 mm pit
- 3+
 - 6 mm pit
- 4+
 - 8 mm pit
Lymphedema/Venous Stasis Tx

Compression wrapping

Pneumatic Pumps
Skin changes with edema
Skin changes with edema

Hemosiderin Staining- iron deposition after RBC degradation
Skin changes with edema

Lipodermatosclerosis
Skin changes with edema

• Hyperkeratosis - abnormal thickening of the stratum corneum (scaly/dry)
Skin changes with edema

Papillomatosis- papillary surface elevation (cobblestone)

Taken from Wound Series Part 4: Lymphedema and Chronic wounds https://ceufast.com/imgs/wd-4-pic-3.jpg
Skin changes with edema

- Lymphedema Rubra
 - NOT cellulitis
 - Does not need antibiotics
Atypical Wounds
Pyoderma Gangrenosum

- Exact etiology is unknown. Dysregulation of immune system.
- Diagnosis of exclusion
- Internal organs may be involved, with lungs being the most prevalent.
- Affects 1:100,000 people each year
- Most frequent in 40s and 50s
Pyoderma Gangrenosum

• History
 • Patient may describe the initial lesion as
 • Insect/spider bite
 • A red “bump” (papule)
 • Pustule
 • The lesion progressively gets worse and more painful
 • The pain is often out of proportion to the wound
 • May occur around stoma sites and be mistaken for irritation
Pyoderma Gangrenosum

- **History**
 - Over 50% of patients with PG have an auto-immune disease.
 - Ulcerative colitis and Chron’s Disease most common
 - Less common in RA, psoriatic arthritis, AS, and SLE
 - May also be associated with leukemia and hepatitis

- **Pathergy**
 - Minor trauma leads to development of ulceration
 - Trauma to ulceration can cause the wound to grow
Pyoderma Gangrenosum

- Presentation
 - Usually in the legs or around a stoma
 - Deep ulceration
 - Violaceous border around the wound
 - Purulent base is common
 - Wound edges are often undermining
Pyoderma Gangrenosum
Pyoderma Gangrenosum
Pyoderma Gangrenosum

• Work-up
 • Diagnosis of exclusion. No true diagnostic
 • Biopsy, wound culture, CBC, CMP, LFT, hepatitis panel
 • Evaluate for auto-immune disease if not previously diagnosed
 • Vascular studies
Pyoderma Gangrenosum

• Treatment
 • Prednisone is first line medication
 • Cyclosporine, TNF-alpha inhibitors (infliximab, adalimumab, etc) dapsone, tacrolimus, and other systemic therapies are second line.
 • Super-potent topical steroids (cromolyn 2%, 5-aminosalicylic acid)
 • Topical tacrolimus (less evidence)
 • IV methylprednisone and immunoglobulin
 • Hyperbaric Oxygen Therapy (limited evidence)
 • GENTLE WOUND CARE- pathergy
 • Methylene blue and crystalline violet dressings
 • Silver sulfadiazine
 • Avoid debridement or surgery unless on steroid therapy
Calciphylaxis

- Poorly understood pathophysiology
 - Most common in chronic renal failure (1-4% ESRD)
 - Obesity, DM, hypercalcemia/phosphatemia
 - Systemic inflammation is also believed to be a predisposing factor
 - Chronic use of corticosteroids
 - Vascular disease, with concurrent use of anticoagulation
- Lesions develop and progress rapidly
 - Usually in lower extremities
 - May develop on hands and torso
 - In men, may have lesion on penis
- Intense pain
Calciphylaxis

• Presentation
 • Early lesions appear with violaceous mottling
 • Become stellate purpuric lesions with central skin necrosis
 • May have internal involvement
 • GI bleeding
 • Infarction
 • Organ failure

• Work-up
 • CBC CMP
 • PTH
 • Coags
 • ANA ANCA to rule out vasculitis
 • X-ray can show vascular calcification
 • Incisional cutaneous biopsy
Treatment

- Poor prognosis
 - Ulceration is considered a late finding
 - 1 year survival rate is 25%
 - 5 year is 17%
- In acute disease, send to hospital
- Dialysis compliance
- Phosphate binders
- Calcimimetics
- Parathyroidectomy
- Sodium thiosulfate (limited evidence/off-label)
- Amputation
- No consensus on debridement. Case by case
Calciphylaxis
Dressing Selection
Dressing Selection

- Bioburden/infection
 - Silver dressings
 - Cadexomer iodine
 - Topical abx (bacitracin, bactroban, gentamicin, etc)
 - Betadine/Iodine/Dakin’s...DILUTED WITH NS!!!
 - Petrolatum impregnated gauze

- Slough/Biofilm
 - Debridement***
 - Santyl
 - Manuka Honey
 - Hydrocolloid (superficial wounds only)
Dressing Selection

- Heavily draining wounds
 - Calcium Alginates, Hydrofibers, and specialty products

- Moderately draining wounds
 - Same as above, foams

- Minimal to no drainage
 - Foam, hydrocolloid, hydrogel, etc.
Any Questions?
References

